Kafka producer
CSV File
Store
Kafka Cluster
Spark Stream
Spark Dataset
Output of stream
Spark Aggregated DataSets
Final Alert Data

Architectural Diagram and Explanation

1. Csv: Is the uncompressed csv file that contains raw data will be placed at a particular location on file system.

2. Spring-Kakfa-Producer: This is a spring-java-kafka producer which will read each line of the input file except the first one line, assuming it will contain column details, and convert into line protocol data and write it to kafka topics.
a. File will be read only if that file is placed after producer has started. All the file placed on that location before producer has started will be ignored.
b. Once a file is read it will be tagged with “_processed” flag so that to exclude it in next iteration(As of now all the renaming issues has not dealt).
c. An extra measurement tag has been added to the data, so that all the data points could be directed to same database in Influxdb.
d. As of now it is configured as single thread serial producer, but if other behavior is required, it can be configured easily.
e. All the data formatting and filtering is done at this stage only, but duplication of data is not handled here.
f. Smart Regex is used to do the data filtering.
g. I am using Idempotent Kafka producer that can guarantee that one message can be send only once, however that is only valid till it a producer is alive, this situation can break if a producer dies and respawn.
Conclusion: Even though there is an idempotent producer still there is a possibility of getting duplicate message, that is handled in spark.

Data is consumed from kafka by spark us directStream which can guarantee that one message will be consumed by spark only once, however if kafka itself has a duplicate entry that can’t be avoided at this stage.

Before we move onto the spark architecture, let’s see some facts,
1. Mean is associative in nature and (mean_1 + mean_2+..+mean_n)/ = mean_all. That mean is can be precomputed and stored.
2. SD is not associative in nature, SD dependant of the data points, and cannot be computed from different SDs. SD of (SD_1+SD_2+....+SD_n) != SD_n. For this reason we have to ingest all the data points all the time to calculate SD.

Taking These facts into consideration, Below is the spark architecture.

Ideally Scenario: Spark I have designed for two jobs to do following tasks

Job 1: It is the streaming job that ingest per hour of data
 1. Will convert that into datasets
 2. Will persist that data into hourly specific folders
3. Will compare it with pre computed mean and Standard deviation and will generale one-to-one alerts depending on the grouping.
4. Distinct the data set. Since all the data here is belongs to a particular duration of time, it is safe to remove duplicated at this stage.
4. Persist final alert data in CVS format.

Job 2: It is spark batch job which will ingest data that is persisted from job 1 and will compute the mean and SD for all the data for a particular hour and will keep it ready for stream to ingest.
For example as soon as, 01-09-2013_00 ingestion is complete, second job will ingest all the data for that hour and from all the other dates, will union all the data and will compute the mean and SD.

Since Job 2 is a the heavy lifter it is very important to tune it well but also it have 24 hours of time duration to make the data ready. So we can plan accordingly.

Above was description of how my architecture will work in ideal scenario, but here for this competition every data is stale data, so job 1: is just ingesting data and grouping it by time window and pushing it to appropriate folders.
Job 2: is ingesting current data and all the historic data, calculating mean and median, and creating the final result.

Requirements:
· Architecture Used: Spring KAfka ->Spark Stream -> Spark Dataframe
· Pipeline Setup: please refer the diagram
· Data Format: CSV -> JSON -> JOSN ->CSV
· Efficiency and Quality of solution: Described in above section
· Data Cleaning and Imputation methods used: Described in above section

image2.png

